, Auto-Opstroom.com: August 2008

5 Facts: Building an Electric Car




1. How Can You Get an Electric Car?
Today, no major automaker is making full-function battery electric cars that are sold in the U.S. There are electric powered neighborhood electric vehicles (NEVs) available here, but these are legally limited to 25 mph top speeds and cannot be used on public highways with posted speed limits above 35 mph. Thus, if you want an electric car that can go highways speeds, you’ll probably have to build it yourself.

2. Converting Gas Cars to Electric
Since building an entire electric car from scratch is a daunting and expensive task, most electric cars are converted from used gasoline powered vehicles. In fact, a number of companies used to do this for fleets and well-moneyed individuals in years past. The engine, transmission and related components are removed and replaced by batteries, electric motors, controllers, and other electric drive-specific parts. Major automakers took this approach for a short number of years in the 1990s by incorporating electric drive into existing models like the Ford Ranger, Chevy S-10, Toyota RAV4, and so on. Private electric vehicle (EV) conversions are all over the board and have ranged from Volkswagen Beetles and Pontiac Fieros to fiberglass kit cars and BMW 325i sedans. Because of the amount of power needed to propel a large vehicle – and the correspondingly greater number of heavy batteries required – most electric cars are typically converted from smaller vehicles. Geo Metros, Yugos, and VW Rabbits are quite popular, probably because non-running ones can be purchased for cheap.

3. Do Your Research
Thousands of people have built electric vehicles for over 100 years. In fact, electric cars were already quite reliable while gasoline powered cars were still being ‘invented.’ If you’re considering a conversion, take advantage of the knowledge base out there to avoid the errors others have made over time. A Google search on ‘Building an Electric Vehicle’ comes up with 3,290 web pages, many with relevant information on EV conversions. Several good books have also been written on EV conversions, some that can be found on Amazon.com. Others out of print sometimes show up on EBay. There are also many electric car clubs around the country and organizations like the Electric Auto Association (www.eaaev.org) that offer information and links to regional electric vehicle organizations. Resources like these provide a great way to pick the brains of other electric car owners and builders. As part of your research, it’s important to make sure you can drive an EV on roads in your state and community. One thing is sure: you won’t need a smog test.

4. Plan Ahead
Plan your conversion in great detail before you start to build it. This will ensure that all the components will fit inside and still leave room for people and cargo. It’s important to be sure that the weight of your batteries will not be so great that the motor will only move the car slowly or not at all. You also must avoid overloading your suspension or chassis because the consequences of this can vary from a vehicle that’s unwieldy to one that’s just plain dangerous. Carefully plan where you’ll be locating batteries to help distribute weight and avoid compromising the vehicle’s crashworthiness. When it’s time to buy parts, there are many online sources to tap for quality parts and systems that have been in this business for a long time, like KTA Services (www.kta-ev.com).

5. EV Builders are Great Scavengers
If you don’t have a large budget for the project, you may have to scrounge around for used or out-of-date components because state-of-the-art components can be costly. While purpose-built DC or AC electric motors are available, many builders use motors salvaged from other applications such as forklifts, elevators, or even golf carts, though these may be too heavy or not powerful enough for an EV conversion. Double-check to make sure that the components you’re planning to use are compatible. For instance, will the circa-2005 controller work with a 1970s-era electric motor? Probably not. To provide power, lead-acid batteries are usually used because of their affordability, but these do result in limited range and they’re also quite heavy. Other battery types – such as lithium-ion and nickel-metal-hydride – are still beyond the means of most builders.

Solar Powered, Carbon Neutral Pyramid to House 1 Million People in Dubai




Ancient Egyptian pyramids and Middle Eastern ziggurats are coming alive in the 21st century technology.
A new futurist concept that encompasses green building technology and—according to the developer—can house up to a million people, will make a debut at the world stage in October.

The 2.3 square kilometer Ziggurat Project, undertaken by Timelinks, a Dubai based environmental design company, will be 100 per cent carbon neutral and will run by harnessing the power of nature setting a futuristic pace for eco-friendliness for other similar projects in the pipeline.

Borrowing from ancient ingenuity, the inhabitants won’t even have any use for a car: transport throughout the complex would be connected by an integrated 360 degree network (horizontally and vertically) so cars would be redundant. Biometrics would provide security with facial recognition technology.


Ziggurat’s Carbon Neutral Accolades:
Ridas Matonis, director of Timelinks, said, “Ziggurat communities can be almost totally self-sufficient energy-wise. Apart from using steam power in the building we will also employ wind turbine technology to harness natural energy resources.”

Ziggurat’s Nature Accolades:
“Whole cities can be accommodated in complexes which take up less than 10% of the original land surface. Public and private landscaping will be used for leisure pursuits or irrigated as agricultural land. “If these projects were realized today the world would see communities that are sustainable, environmentally friendly and in tune with their natural surroundings.”

Solar Powered, Carbon Neutral Pyramid to House 1 Million People in Dubai In the ancient world, ziggurats, important to the Sumerians, Babylonians and Assyrians of ancient Mesopotamia, were temple towers mainly around the Mesopotamian valley and Iran, and had the form of a terraced pyramid of successively receding stories or levels.

The ziggurat style of architecture has been copied today in many places of the world including the SIS Building, also commonly known as the MI6 Building, the headquarters of the British Secret Intelligence Service and the headquarters of the California Department of General Services in West Sacramento, California.

But nothing has been so futuristic and real until now, Timelinks is even making steps to patent the design and technology incorporated into the project. The carbon neutral enclave will be unveiled at Cityscape Dubai, Middle East’s largest business-to-business real estate and investment exhibition that will run on October 6 to 9, 2008.

Image courtesy: World Architecture News

How Hydrogen Fuel Cells Work


How Fuel Cell Works Article Lead

What do batteries and fuel cells have in common? They are both electrochemical energy conversion devices that produce electricity. Also, they both have anodes, cathodes, and an electrolyte. There are also big differences. Batteries produce electricity until completely discharged, then they have to be replaced or recharged. A fuel cell continues to produce electricity as long as it is supplied with fuel and oxygen. In the typical fuel cell used in transportation, that’s hydrogen and air. A battery produces essentially no emissions and little heat, while a hydrogen fuel cell emits water and more heat.

While there are several different types of fuel cells, they all work on the same basic principle. The proton exchange membrane (PEM) fuel cell will be discussed here. With rare exception, this is the technology being developed for use in cars, trucks, and buses. PEM fuel cells appear to be the most promising for vehicles because the reactions are about the simplest of any fuel cell design. They also have a high kilowatts-per-cubic-inch power density. Their relatively low operating temperature of 140 to 176 degrees F means they start to produce electricity quickly and don’t require expensive cooling systems.

In a PEM fuel cell, pressurized hydrogen gas enters on the anode side and is forced through the catalyst. Here, H2 molecules come in contact with catalyst, splitting it into two H+ ions (protons).and two electrons. The proton exchange membrane and electrolyte let positively charged proton through and block negatively charged electrons.

How Fuel Cell Works

Electrons are conducted through the anode and travel through the external circuit as DC (direct current) electric power, which can useful for purposes such as powering an electric motor, and then they reach the cathode. Here they combine on the cathode’s catalyst with the proton coming through the membrane and with oxygen gas, or air, forced through the catalyst, where they form two oxygen atoms with a strong negative charge. This negative charge attracts the two H+ ions, which combine with an oxygen atom and two of the electrons to form a water molecule.

The proton exchange membrane is a specially treated material that looks somewhat like ordinary kitchen plastic wrap. The membrane must be hydrated to transfer protons and remain stable. Thus, fuel cell systems must be designed to operate in sub-zero temperatures, low humidity environments, and high operating temperatures. At about 70 degrees F, hydration is lost without a high-pressure hydration system.

Catalysts play the crucial role of separating hydrogen into ions and protons at the anode and combining them, plus water, at the cathode. Typically these use a platinum group metal or alloy with platinum nanoparticles very thinly coated onto carbon paper or cloth. The catalyst is rough and porous to expose maximum surface area to the hydrogen or oxygen. The platinum-coated side of the catalyst faces the membrane.

Fcx Fuel Cell Cutaway

Precious metal catalysts plus proton exchange membranes, gas diffusion layers, and bipolar plates make up about 70 percent of a current fuel cell’s cost. Because of this, plus the rarity of precious metals and competition from other uses such as catalytic converters, some critics say platinum is the PEM fuel cell’s Achilles heel. Research is under way to solve this potential impediment. For example, researchers are looking at ways to use less of the precious metals and to find alternatives. Recycling platinum, especially from catalytic converters, is already common practice. More abundant gold, reduced to nanometer size, could be used as a catalyst as well. Enhancing a catalyst with carbon silk can also reduce the amount of precious metals required.

Another problem with PEM fuel cells is that impurities can poison the catalysts, resulting in reduced efficiency and activity so more dense catalysts are required and more platinum is used. Again, research is underway to solve the problem with various promising techniques being explored, like using a gold-palladium coating that may be less susceptible to poisoning.

Gm Fuel Cell Lr

Since a single fuel cell produces only about 0.7 volts, many separate fuel cells are combined to form a fuel cell stack. They can be connected in a parallel circuit for higher current and in series for higher voltage.

Fuel cells are very efficient. If supplied with pure hydrogen they can convert 80 percent of the hydrogen’s energy content to electric power. If the electricity is used by an electric motor and inverter in a fuel cell vehicle – which are about 80 percent efficient – the overall efficiency is 64 percent. This compares to the approximate 20 percent energy conversion efficiency of the typical gasoline-fueled vehicle, providing yet another reason why fuel cell vehicles hold such promise for the future.

Scientists say hydrogen could be “easily” produced from water and sunlight

Chicago (IL) – Hydrogen shapes up to become one of the most important fuels for the future, but scientists need to overcome substantial hurdles to enable an efficient production of hydrogen. We increasingly hear about ideas that suggest that future engines in fact may be able to run on water, breaking down water into oxygen and hydrogen right where it is needed. This process requires significant input energy, which, according to scientist could be provided by sunlight.

The production of hydrogen and implications of the amount of energy that is required to create it has been met with lots of skepticism, especially if the burning of fossil fuels is involved. Scientists from Monash University in Australia, the Commonwealth Scientific and Industrial Research Organisation in Australia and Princeton University in the U.S., however, believe they can completely circumvent fossil fuels by applying photolysis, a method to split water using the energy contained in light.

According to an article published in the German journal Angewandte Chemie, the research group claims that has developed a catalyst that “effectively catalyzes” one of the necessary half reactions required by this process, the photooxidation of water representing an anodic half-cell. The catalyst is a manganese-containing complex modeled after those found in photosynthetic organisms, the scientists said.

Image

The basic idea behind creating hydrogen is electrolysis, which is described as the reverse of the process that can be seen in a battery – electrical energy is converted in chemical energy and the goal, of course, is to do this in the most efficient way possible. Electrolysis consists of two half reactions: At the cathode, protons (positively charged hydrogen ions) are reduced to hydrogen, whereas the oxidation of water produces oxygen at the anode. Sunlight and photocatalysts are believed to hold one key to jumpstart this process.

The scientists said they used a manganese oxo complex with a cubic core made of four manganese and four oxygen atoms capped by ancillary phosphinate molecules as a catalyst. The catalytically active species is formed when energy from light causes the release of one the capping molecules from the cube. However, the manganese complex is not soluble in water. The researchers claim to have overcome this problem by coating one electrode with a thin Nafion membrane. Housed within the aqueous channels of this membrane, the catalytic species is stabilized and apparently has good access to the water molecules, completing the anodic half cell.

The scientists said that their development “could be easily paired with a catalytic hydrogen-producing cathode cell” in order to create an entire photoelectrochemical cell that “produces pure hydrogen and oxygen from water and sunlight”.

There was no information whether such a cell has been built or is currently in development.

Vision 21 - the Ultimate Power Plant Concept

Vision 21 - Artist Concept of a Futuristic Breed of Coal-Fired Power Plants

Program Performance Goal:
By 2015, develop the core modules for a fleet of fuel-flexible, multi-product energy plants that boost power efficiencies to 60+ percent, emit virtually no pollutants, and with carbon sequestration release minimal or no carbon emissions.


Vision 21 is a futuristic energy concept unlike any power plant that exists today.


TECHNOLOGY GOALS


Efficiencies

Emissions

Costs

Under development by the Department of Energy's Office of Fossil Energy, the concept envisions a virtually pollution-free energy plant. Unlike today's single purpose power plants that produce only electricity, a Vision 21 plant would produce multiple products - perhaps electricity in combination with liquid fuels and chemicals or hydrogen or industrial process heat. It also would not be restricted to a single fuel type; instead, it could process a wide variety of fuels such as coal, natural gas, biomass, petroleum coke (from oil refineries), and municipal waste. It would generate electricity at unprecedented efficiencies, and coupled with carbon sequestration technologies, it would emit little if any greenhouse gases into the atmosphere.

Vision 21, if successful, could revolutionize the power and fuels industry within the next 15 years.

The approach is to develop a suite of technology modules that can be interconnected in different configurations to produce selected products. These modular facilities will be capable of using a multiplicity of fuels to competitively produce a number of commodities at efficiencies greater than 60 percent for coal-based systems and 75 percent for natural gas-based systems with near-zero emissions.

Vision 21 builds on a portfolio of technologies already being developed, including low-polluting combustion, gasification, high efficiency furnaces and heat exchangers, advanced gas turbines, fuel cells, and fuels synthesis, and adds other critical technologies and system integration techniques. When coupled with carbon dioxide capture and recycling or sequestration, Vision 21 systems would release no net carbon dioxide emissions and have no adverse environmental impacts.

Many of the Vision 21 activities complement and extend focused activities to achieve intregated gasification combined cycle and other advanced high efficiency technologies. For example, hot gas particulate filtration, hot gas sulfur/alkali control, and air separation are critical elements to coal gasification. Vision 21 addresses gas separation and cleanup, but extends the development effort to:

  • increasingly efficient and cost-effective measures for particulate and sulfur/alkali control and air separation; and
  • measures dealing with a broader range of gases, such as hydrogen and carbon dioxide.

Advanced gas separation and cleanup are critical to achieving hybrid systems, fuel and product flexibility, and carbon sequestration. Hybrids and fuel and product flexibility offer the potential for major improvements in cost and performance. And effective carbon dioxide capture is a prerequisite to carbon sequestration.

A hybrid system showing great promise is integration of gasification with a fuel cell. Fuel cells offer very high efficiencies, with emerging fuel cells having 60 percent efficiency. These emerging fuel cells also produce very high-temperature exhaust gases that can either be used directly in combined-cycle or used to drive a gas turbine. Integrated gasification fuel cell hybrids have the potential to achieve up to 60 percent efficiency and near-zero emissions. Moreover, the concentration of carbon dioxide lends itself to removal by separation or other capture means. Such systems require that the syngas derived from gasification be free of contaminates for use in the fuel cell, or that the hydrogen be separated from the syngas (hydrogen is the fuel element for the fuel cell).

Fuel flexibility enables the use of low-cost indigenous fuels, renewables, and waste materials. Use of renewables and wastes contributes to solving environmental problems as well as reducing operating costs. The challenge is to develop effective feed mechanisms for these alternative fuels, establish effective operating parameters, and provide the means to achieve the operating parameters and to control any new pollutants that might be formed. For advanced, high-performance gas turbines, and hybrids incorporating advanced turbines/fuel cells, fuel flexibility requires research to address combustion of low-Btu gases and maintain low-NOx emissions at increasingly higher temperatures.

Product flexibility allows power suppliers to supplement revenues by designing plants to site- or region-specific markets for high-value by-products. Many chemical and fuel processes, however, require nearly contaminant-free syngas and warrant improvements to enhance product quality.

Carbon sequestration is the ultimate solution to stabilizing global carbon emissions. A prerequisite to carbon sequestration is carbon capture, which for power systems is carbon dioxide capture. Power system developments are moving toward higher efficiency to lower carbon dioxide emissions on a per-Btu basis and toward more concentrated carbon dioxide emission streams through oxygen-rather than air-based gasification and combustion. Air separation efforts support the move to oxygen-based systems. Ultimately, carbon dioxide must be captured either through chemical or physical separation methods.

Vision 21 is addressing the challenges outlined above through a cooperative effort involving industry, universities, and National Laboratories. It includes fundamental research in materials science, novel concept evaluation at bench-scale, and process verification at pilot-scale. Facilities such as the Power System Development Facility at Wilsonville, Alabama, along with industry/National Laboratory/university facilities, are being enlisted to address these challenges.

American Ingenuity Leads to Biodiesel Breakthrough

A small group of unassuming mid-westerners has discovered what could be a complete game-changer for the global biodiesel industry. Their new system makes biodiesel in mere seconds, creates a product that costs half the price, produces no waste, and can use any animal fat or vegetable oil as a feedstock.

I’ll tell you what — even though I’m sometimes down on my country because of the pathetic state of our government — the thing that always makes my patriotism swell is the truly amazing and unexpected ingenuity that seems to spring forth from the American people.

And in this tale, American ingenuity doesn’t get much more classic. A student and his professor at a small college smack dab in the middle of the heartland that virtually nobody’s ever heard of, have figured out a way to make biodiesel quickly, cheaply, and efficiently from a very small package.

We’re not just talking an incremental improvement, we’re talking half the price and a tiny fraction of the time — a revolutionary change for the biodiesel industry. Think on the order of saving $2 for every gallon and going from raw materials to biodiesel in a few seconds versus many hours.

Not only that, the process can convert any animal fat or vegetable oil, mixed in any ratio, into biodiesel using the same compact reactor in a continuous stream. Compare this to the current method which converts the oil or fat to biodiesel over many hours in huge vat batches and creates a lot of potentially hazardous waste products.

The Mcgyan® process (so named for the inventors McNeff, Gyberg and Yan) started as a required undergraduate chemistry project for student Brian Krohn at Augsburg College in Minneapolis, MN. Krohn and his major professor, Arlin Gyberg, were looking at ways to catalyze the raw materials into biodiesel using a process called esterification.

The basic idea was to run the raw fats and oils over a sulfated zirconia catalyst to change them into biodiesel. This idea isn’t new, but the duo thought they could improve on it. In the end, the pair enlisted the help of another scientist Ben Yan and an Augsburg alum Clayton McNeff.

McNeff already owned a company that made zirconia separating columns which are typically used for something completely different. With a little modification, these columns were turned into sulfated zirconia biodiesel reactors.

Basically, the process works like this:

  • Raw fats and oils of any type are combined with an alcohol
  • This mixture is fed through a sulfated zirconia column heated to 300 degrees Celsius
  • Their Easy Fatty Acid Removal (EFAR) system recycles any unreacted raw material back through the reactor
  • Excess alcohol is recycled back through the reactor
  • Pure biodiesel comes out the end

The advantages of the system are:

  • No waste produced; No washing or neutralizing of the biodiesel is necessary
  • 100% conversion of raw materials to biodiesel
  • Any raw fat or oil can be used to make biodiesel
  • Very efficient due to heat recapture from the column
  • Sulfated zirconia catalyst never needs replacing
  • Very small footprint of the reactor system, uses an extremely small amount of area for the amount of biodiesel produced
  • Essentially no emissions and no waste stream from the process; Easy permitting from the government

The group has formed a company called Ever Cat Fuels and is in the process of building a 3 million gallon per year (MMgy) commercial biodiesel facility with the intention of scaling it up to 30 MMgy in the next 3-5 years. As soon as the Ever Cat plant is producing biodiesel successfully, the group plans on licensing the technology to other interested parties.

Fisker aims to make four versions of the Karma


Henrik Fisker and the Karma.
Expect to see more Karma from Fisker Automotive, if its flagship sedan makes it to the market by late 2009.

The upstart California electric-car maker is planning to make three other variants of the plug-in Karma sedan: a convertible, coupe and possibly a four-door sport-utility vehicle. They would launch following the sedan and be available by 2012, said Vic Doolan, a Fisker board member and director of retail development.

The three variants would be based on the Karma sedan and use the same battery pack.

Speaking on Wednesday to a group of analysts and media at a conference in suburban Detroit, Doolan said Fisker's goal is to snag 3.3 percent of the luxury market in the United States, though the company isn't including large SUVs, such as the Lincoln Navigator, in that figure. Doolan is the former CEO of Volvo Cars North America.

Meanwhile, Fisker continues work on the Karma, and the concept was shown at the conference. It will sticker for about $87,000, and the company plans to make 7,500 units in 2010, with a volume of 15,000 units in 2011.

A vehicle priced in the $60,000 range also is under consideration.

Initially, the Karma would be assembled in Finland, though Doolan said Fisker wants to ultimately make cars in the United States.

Sales are expected to pump up the privately held company's revenue to $1.3 billion in 2011. The carmaker is led by former Aston Martin designer Henrik Fisker.

Lotus Builds A Propeller-Driven Biofuel Vehicle On Skis

Lotus_ice01

Lotus is renowned for building lightweight sports cars with razor-sharp handling, but it's traded tarmac for snow pack with a prop-driven, biofuel-burning ice-rider designed for a 3,000-mile trek across Antarctica.

The crew from Hethel built the Concept Ice Vehicle for researchers who will cross the South Pole during the Moon Regan TransArctic Expedition. The point of the journey is to raise awareness of the impact global climate change is having on the continent, but we can't help thinking the explorers are making the trip as an excuse to play with their cool new toy.

It wouldn't do for researchers making a point about global warming to tool around a polar ice cap spewing C02, so Lotus made the CIV as green as it is white.

The CIV was built by Kieron Bradley, a former Formula 1 chassis designer, and polar guide Jason de Carteret. It burns biofuel and uses what looks to us like a BMW motorcycle engine to spin a huge propeller. The vehicle is 15 feet long and 15 feet wide and rides on three skis, each with independent suspension -- Lotus builds sports cars, after all -- to make traversing the sastruga fields a little easier on the guy in the cockpit. Braking comes from a spiked foot that works a bit like an ice axe.

In keeping with Lotus' design philosophy, the CIV is light - so light the crew can drag it across terrain too rough to ski over. Still, pulling it out of a crevasse would be a hassle, so there's a GPS and ice-penetrating radar system to warn of dangers on, and below, the ice.

The CIV scout the way for a pair of six-wheel drive "Science Support Vehicles" that will haul the team and its equipment. They're almost as cool as the ice vehicle. They've got low-emission, turbocharged 7.3-liter diesel engines, 20-speed transmissions and independent air suspensions with 26 inches of travel and 44-inch tires. Still, we're betting everyone will want to drive the CIV.

Photos by Lotus and Moon Regan TransArctic Expedition.

Lotus_ice03


Lotus_ice05

Lotus_ice02


Hydrogen-Producing Bacteria Provide Clean Energy

A new "green" technology developed cooperatively by scientists with the Agricultural Research Service (ARS) and North Carolina State University (NC State) could lead to production of hydrogen from nitrogen-fixing bacteria.

Renewable sources of energy—such as hydrogen—that don't produce pollutants or greenhouse gases are needed to solve global energy shortages. Fossil fuels such as coal, oil and natural gas are nonrenewable energy sources implicated in global warming.

The invention holds promise as a source of hydrogen for use in fuel cell technology. Fuel cell devices combine hydrogen and oxygen to produce electricity and water, and are considered efficient, quiet and pollution-free. Fuel cells are now being tested in a range of products, including automobiles that release no emissions other than water vapor.

ARS inventors Paul Bishop and Telisa Loveless and NC State inventors Jonathan Olson and José Bruno-Bárcena developed the patent-pending technology.

Nitrogen-fixing bacteria play a key role in agriculture. They live in soil and on certain plant roots, and convert nitrogen from the air into a chemical form that plants can use to grow. The researchers developed a way to identify strains of these bacteria that produce hydrogen gas.

Bishop first demonstrated novel aspects of bacterial nitrogen-fixing more than two decades ago. Building on that work, the team developed a method that uses a selecting agent to identify these special hydrogen-producing strains. The selecting agent allows researchers to identify these bacterial strains without the need for genomic sequencing or genetic modification.

Using the selecting agent, the inventors identified a gene that inactivates the bacteria's hydrogen uptake system so that all of the hydrogen produced is released. Because the bacterial cells cannot recycle the hydrogen, the hydrogen they produce can be captured and used as a fuel whose byproduct is water and heat.

Licensing information can be obtained by contacting the ARS Office of Technology Transfer or the Office of Technology Transfer at NC State.

ARS is a scientific research agency of the U.S. Department of Agriculture.

Drilling Boom Revives Hopes for Natural Gas

HOUSTON — American natural gas production is rising at a clip not seen in half a century, pushing down prices of the fuel and reversing conventional wisdom that domestic gas fields were in irreversible decline.

The new drilling boom uses advanced technology to release gas trapped in huge shale beds found throughout North America — gas long believed to be out of reach. Natural gas is the cleanest fossil fuel, releasing less of the emissions that cause global warming than coal or oil.

Rising production of natural gas has significant long-range implications for American consumers and businesses. A sustained increase in gas supplies over the next decade could slow the rise of utility bills, obviate the need to import gas and make energy-intensive industries more competitive.

While the recent production increase is indisputable, not everyone is convinced the additional supplies can last for decades. “The jury is still out how big shale is going to be,” said Robert Ineson, a natural gas analyst at Cambridge Energy Research Associates, a consulting firm.

Still, many people in the natural-gas industry believe a new era is at hand, and a rising chorus of Wall Street analysts and Congressional lawmakers supports that notion. Competition among companies for rights to the new gas has set off a frenzy of leasing and drilling.

“It’s almost divine intervention,” said Aubrey K. McClendon, chairman and chief executive of the Chesapeake Energy Corporation, one of the nation’s largest natural gas producers. “Right at the time oil prices are skyrocketing, we’re struggling with the economy, we’re concerned about global warming, and national security threats remain intense, we wake up and we’ve got this abundance of natural gas around us.”

Senior Democrats in Congress are getting behind natural gas, portraying it as an alternative fuel for transportation that can serve as a stopgap until renewable sources of energy, like solar and wind power, become economical on a broad scale.

“You can have a transition with natural gas that is cheap, abundant and clean,” the House speaker, Nancy Pelosi of California, said Sunday on “Meet the Press” on NBC.

She also said that an investment she and her husband had made in a company that produces natural gas for use in automobiles, revealed last week by The Wall Street Journal, was not a conflict of interest because “I’m investing in something I believe in.”

Representative Rahm Emanuel of Illinois, the chairman of the House Democratic caucus, has introduced legislation to offer more tax credits to producers and consumers of natural gas and mandate the installation of natural gas pumps in some service stations.

Domestic gas production was up 8.8 percent in the first five months of this year compared with the period a year earlier, a rate of increase last seen in 1959, during the great drilling boom that followed World War II.

Most of the gain is coming from shale, particularly the Barnett Shale region around Fort Worth, which has been under development for several years. The increase in gas production stands in sharp contrast to the trend in domestic oil production, which has been declining steadily since 1970 and dropped 21 percent in the last decade alone.

The Barnett region proved that, using new technology, shale gas could be extracted on a large scale. But lately, companies have set their sights on shale formations that could produce far more gas than the Barnett.

Testing to determine the productivity of fields has been completed on just a tiny fraction of the potential acreage. According to a new report by Navigant Consulting, paid for by a foundation allied with the gas industry, there could be as much as 842 trillion cubic feet of retrievable gas in shales around the country, enough to supply about 40 years’ worth of natural gas, at today’s consumption rate. But thousands of wells need to be drilled before the exact reserves will be known.

Domestic natural gas prices have already plunged 42 percent since early July, an even faster drop in price than oil or most other commodities, in part because the rapid supply growth has begun to influence the market. Price spikes remain possible, of course, but throughout the industry the shale discoveries are causing a shift in thinking about the long-term outlook.

Black or brown shales are a type of sedimentary rock, high in organic matter, found beneath millions of acres in at least 23 states, including New York. The rock has been known for more than a century to contain gas, but it was considered virtually worthless until a decade ago because typical wells on such sites would produce gas briefly and then die.

Now, companies are drilling long, horizontal wells and pumping in water to fracture the rock, releasing vastly more gas than could the vertical wells of old.

The Barnett was the first shale field to undergo major development, and gas production has gone up tenfold since 2001, so that it now produces 7 percent of the nation’s supply of natural gas. At least two other shale formations, the Haynesville in Louisiana and Texas and the Marcellus in Appalachia, are believed to be even larger, though substantial production in those will take another two to five years.

Prospectors have identified at least two dozen shale beds in North America that could contain large amounts of gas.

“Production is clearly growing, and the growth is sustainable,” said Michael Zenker, a natural gas analyst at Barclays Capital.

A Deutsche Bank report, by the analyst Shannon Nome, recently estimated that production from the eight largest shale fields was likely to hit 6.6 billion cubic feet a day this year, or 11.8 percent of national gas production, and then rise to 14.5 billion cubic feet a day by 2011 — almost a quarter of domestic production.

“Shale is the most significant domestic natural gas find in 50 years,” said Chris Ruppel, an analyst at the institutional brokerage firm Execution, “which means the United States will become gas independent, and more industrially competitive versus Europe for gas-intensive industries such as chemicals, fertilizer, smelting iron and aluminum.”

Shale gas could ultimately be important beyond North America. The rest of the world has shale formations on an immense scale. Many of them are known to contain gas, but exploration and assessment of those fields with the new production techniques have barely started.

Several large shale fields are being explored in Canada. In the United States, real estate speculators are becoming overnight millionaires in Pennsylvania, Louisiana and Texas by buying up parcels of land and flipping them to companies that drill for natural gas. Wildcatters are ordering every rig they can get their hands on, and paying signing bonuses of $25,000 an acre to drill below houses, schools and churches. Pipeline companies are building as fast as they can to get the new gas to market.

As the frenzy unfolds, some energy experts urge caution in projecting how big the new supplies will be and whether they will alleviate the loss in productivity of conventional wells, particularly those in the Gulf of Mexico.

“It’s hard for me to believe we will have more domestic gas production in six years than we have now,” said Chip Johnson, president and chief executive of Carrizo Oil and Gas, a Houston company involved in several of the shale fields.

The Energy Department’s 2008 estimates for shale gas reserves that may one day be economically produced stand at 125 trillion cubic feet, about a seventh of the most optimistic industry estimates. Jeffrey Little, a department gas analyst, said the government estimate was based on 2006 data and could increase after further testing.

“The larger reserves could very well be out there, but their magnitude is uncertain,” he said.

Some industry experts warn that shortages of engineers and rigs, scarcity of pipelines near some shale fields and fights over land and water use could slow development in some states.

In the Marcellus field, drilling and pipeline work must be done over woody and hilly terrain, and enormous amounts of water are needed to fracture the shale. Drilling has been halted in places after local regulators caught companies drawing water from streams without permits.

“We see natural gas as potentially a very important transitional fuel, but we can’t use it at the expense of our natural resources,” said Kate Sinding, a senior lawyer for the Natural Resources Defense Council, who warned that water-intensive drilling in shale could threaten local water supplies and aquifers.

Domestic gas production was in decline from the early 1990s to 2005, before production from shale beds and some lesser unconventional fields led to increases beginning in 2006. In the meantime, consumption increased by more than 15 percent, satisfied largely by rising imports.

Prices in recent years soared from less than $2 per thousand cubic feet in 1999 to more than $13 as recently as last month, before a precipitous decline in recent weeks. Natural gas closed Friday on the New York Mercantile Exchange at $7.84 per thousand cubic feet, the lowest price since Feb. 1.

With the growth of power generation from natural gas, the Energy Department estimates that gas consumption will increase 3 percent this year and an additional 1.7 percent in 2009. But that is well below expected supply increases.

Such increases carry risks. Some in the gas industry fear that if prices fall too much, producers will pull back on their investments in drilling and development. “If prices drop much more,” said Mr. Johnson of Carrizo Oil and Gas, “producers will slow down or at least not be as aggressive.”

Solar Sunroof Recharges Car Battery and Provides Temperature Control

Sunroofs are no longer just an easy route to windblown hair and a sunburn with Sunrise Solar’s introduction of the solar sunroof. The technology replaces the traditional glass sunroof with solar technology that generates electricity to recharge a car’s batteries while either cooling or warming the parked car depending on the weather.

Of course, a solar-powered sun roof does not provide nearly enough energy to power an entire car. It might be enough to keep some ventilation fans blowing, but it couldn’t fully recharge a car’s battery during a single day.

Unfortunately, Sunrise Solar’s website provides scant detail about the inner workings of the solar sunroof. The site does, however, give a brief introduction to the company’s other products, which include a solar-powered cell phone charger and a solar light brick.

Asola is also working on a solar sunroof for Fisker Automotive’s Karma, a plug-in hybrid due to be released late next year.

Solar powered spy plane breaks flight record

With solar panels along its 60ft wingspan, the Zephyr promises to revolutionise military intelligence.

The unmanned aircraft stores power from the sun in its batteries, allowing it to continue through the night and, potentially, stay in the air for months at a time.

Unlike conventional spy planes, which need regular refuelling and so make relatively short flights, it will give commanders an unbroken picture of the battlefield.

The engineers who created the Zephyr also believe it will have important civilian applications, including search-and-rescue operations and police surveillance.

It has been developed by the British defence company Qinetiq, which will announce the record-breaking flight tomorrow.

The plane is designed to provide surveillance and communication support for military personnel on the ground by circling slowly over a battle zone, tracking troop movements with its on-board camera. It can reach 70mph at 60,000ft.

Unmanned aerial vehicles, or UAVs, have been used heavily in Afghanistan and Iraq by American and British troops. Pilots operate them by remote control, but the Zephyr flies automatically once airborne, receiving commands via satellite.

Qinetiq aims to provide fully operational systems for the Ministry of Defence and the US Department of Defence within two years.



China to become world leader in renewables



Yet still world’s biggest polluter!

According to Jim Efstathiou of the Bloomberg new service, China, the world's biggest greenhouse gas emitter, is poised to lead world production of solar cells, wind power turbines and low-carbon energy technology.

China's position as a renewable-energy consumer and manufacturer runs counter to its ranking as one of the world's biggest polluters and the country's rapid expansion of coal-fired power generation. About 75% of China's electricity comes from coal, says Changhue China director for the Climate Group, who is based in Beijing.

“They have to do clean energy because they can't just do more and more dirty energy,'' according to Michael Liebreich chief executive officer of London-based New New Energy Finance Ltd which provides research to clean-energy investors. “We're seeing China as being a Number 1, 2 or 3 player in lots of different sectors in this industry.''

China is closing older coal-fired power plants and replacing them with more efficient coal generators, Wu said in a July 25 interview. While China will continue to rely on coal to fuel its rapid economic growth, state officials understand the need to transition to clean energy.

The government wants to reduce the amount of energy China uses to produce each unit of economic output by 20% in two years and has told its 1,000 largest energy-consuming companies to cut their power consumption even more, according to the report.

The energy intensity of China's economy dropped 92 % between 1980 and 2006, according to the report.

About 16 % of China's electricity came from renewable sources in 2006, led by the world's largest number of hydroelectric generators, according to the report. The nation's goal is to increase the proportion of renewable electricity to 23 % by 2020.

China invested over $12 billion in renewable energy in 2007, second only to Germany. The nation needs to invest another $398 billion to reach its 2020 renewable energy goals, an average of $33 billion a year.

More information: www.bloomberg.net

African Solar Could Power all of Europe


African Solar Power Mediterranean Union was launched by the French President Nicolas Sarkozy in concurrence with the European Union. This new international organization will include sixteen non-EU states from around the Mediterranean and all the twenty seven EU countries will be its member too. But why are we discussing political unions in an alternative energy site? Because Mediterranean Union will not only tackle various issues such as regional upheavals, trade, counter terrorism, security immigration pollution etc. but the organization will take up the energy issue too.

As usual people are reacting in skeptical manner saying that Sarkozy wants to trade nuclear power expertise with North African gas reserves. But some are thinking in a positive way too, for instance, the possibilities of solar energy generation. They think that the Union can help a lot in trapping the solar potential of the African nations and transferring that energy to Europe. Scientists from the various European countries are planning for a new supergrid on the sharing basis for member states. The supergrid will use new DC (HVDC- high voltage direct current) lines for the transmissions of power over long distances. Energy losses in DC lines are far less than the AC lines. Denmark and UK can export wind energy and Iceland can export geothermal energy whenever they have surplus energy. But the supergrid’s main function would be to send out renewable solar energy from the Saharan desert to Europe. The scientists want to build a series of huge solar farms in the Saharan desert and connect them to the supergrid.

The grid proposal was seconded by Nicholas Sarkozy and Gordon Brown. This proposal tries to answer the skeptics who claim that renewable power will never be economically viable because the weather is quite unpredictable. This proposal tries to cancel out that element of unpredictability if the wind is not blowing hard enough in the North Sea, it will be blowing somewhere else in Europe, or the sun will be shining on a solar farm somewhere.

Scientists are enthusiastic about harnessing the Sahara solar rays because the sunlight in this area is more intense: solar photovoltaic (PV) panels in northern Africa could generate up to three times the electricity compared with similar panels in northern Europe. The project will take huge investment in terms of time and money. The estimated cost would be €450 billion. By 2050 scientists are thinking of generating 100 GW from the Saharan desert. Much of the money will be used in developing the infrastructure for grid networks. If high voltage cables between North Africa and Italy would be built or existing cables between Spain and Morocco would be used, the infrastructure of these countries too will need restructuring.

Geld voor innovatie met groene grondstoffen

Minister Verburg stelt 3,6 miljoen euro beschikbaar voor innovatieve ondernemers die willen werken met groene grondstoffen. Hiermee kunnen zij bijvoorbeeld alternatieven voor plastic maken.

Minister Verburg (LNV) wil met deze bijdrage de omschakeling versnellen van een economie die afhankelijk is van fossiele grondstoffen, naar een economie op basis van groene grondstoffen (biomassa).

Groene grondstoffen zijn planten en dierlijke restproducten die kunnen worden verwerkt tot producten zoals plastic, lijm, verf, oplosmiddelen, basischemicaliën en medicijnen. Hierbij worden alle onderdelen van de plant of het dierlijk restproduct gebruikt.

Deze producten moeten de economie versterken, maar kunnen bijvoorbeeld ook helpen afvalstromen te verminderen.

Bedrijven kunnen projectvoorstellen indienen via de SBIR-regeling (Small Business Innovation Research).

Via deze regeling ontwikkelen kleine en middelgrote bedrijven in opdracht van de overheid innovaties die helpen maatschappelijke vraagstukken op te lossen. Tegelijk krijgen de bedrijven een kans om nieuwe producten te ontwikkelen.

Innovaties voor bio-energie, zoals de productie van bio-ethanol of biodiesel, komen niet in aanmerking.

RACING AEOLUS©


Get ready for a new level of excitement; master the winds!

For the first time ever, RACING AEOLUS© will be held, in The Netherlands, from August 20 to 23, 2008. Offering a unique chance to be part of the most innovative windpowered vehicle race in the world: sailing straight into the wind in a single-handed land yacht equipped with rotorblades or a (Darius)turbine.


The challenge

The first, ambitious edition of Racing Aeolus©, the sole race for Wind Powered Vehicles able to race STRAIGHT INTO THE WIND, will take place alongside the festivities of the Tall ships
Races 2008 in Den Helder, in the Northwestern part of Holland. Though sailing and landyachting are both considered never to be straight into
the wind, stranger things happen on the Den Helder shores. The race lasts for 3 days. The track is a 5.3 kilometers seawall on the
boundary between land and the sea, which runs from Huisduinen (a former fishermens village) to literally Hollands’ last stop before the Northsea: Lands End.
Participants will have to ride their unique, custom designed, built and tested WPVs' straight against the wind on the (slope)side over the seawall.


Definition of the Wind Power Vehicle

* A land vehicle on wheels, steered by a driver,
* Propulsed by a device with spinning blades or turbine coupled to the wheels
* Temporary storage of energy is allowed during the ride (the storage device has to be empty at the start); the device will source and store it's power from a combination of wind and battery power solely during the course of the race (all depending ond weather condition, racing skills and -strategy.

We hope to welcome come a broad range of Wind Powered Vehicles from all around the world.


Categories & Ranking

The event is open to three, different (national and international) participating categories (all keen to show their competitive, enterprising and technical ingenuity):

1. Technical Universities (f.i. departments of Mechanical Engineering, Automotive, Logistics, Computer Science: all students are invited to compose participating teams)
2. Institutes of Higher Education
3. other such as business community and members of the public

We hope all participants will prove worthy challengers.


Learn more about windenergy and yourself

We hope that each and all teams will show at the start with unique, innovative designs. From preparation to the finish you will be put to the test. Steadfastness, cooperation, endurance & dauntlessness: a great deal is expected of the teams. All to face this unique challenge!

AEOLUS WINDE ENERGY EVENTS

PRESS: contact Sylvia Scheper + 31 628 08 53 89, media point at the old coast guard tower, Zeeweg 6, 1783 AC DEN HELDER |


Green machine: The £92,000 electric sports car that does 125mph in complete silence




It looks just like a normal sports car, has a top speed of 125mph and acceleration of 0-60 in 3.9 seconds.

But the British-built Tesla Roadster, which goes on sale today, has one major advantage - you'll never need to fill it up.

The virtually silent car is powered by an 185kw electric motor and a stack of batteries in its boot. However, this is no G-Wiz - it really does perform like a sports car.

Tesla, the US company behind the £92,000 vehicle, says it already has orders for 1,100 in America and is increasing production at the Lotus Engineering plant in Norfolk.

Roaring silence: The Tesla can accelerate from 0-60 in 3.9 seconds

George Clooney, Matt Damon, Brad Pitt and Arnold Schwarzenegger are all believed to have reserved one.

Only 250 will go on sale in Europe initially, with delivery early next year.


More...

* Lotus fits speakers to electric cars to put the 'vroom' back into silent engines
* Britons prepare for bid to smash world land-speed record

"We believe the people who will buy this car will also be looking at an Aston Martin, a Porsche or a Ferrari," said Darryl Siry of Tesla.

"This is a real sports car, and we want to find those people who not only want that performance, but who also care about the environment."

The car takes three hours to charge up and has a range of 220 miles on each charge.

The company is working on a larger, four-door family version, and is developing a more affordable vehicle with an unnamed major manufacturer.

Unlike other makers of electric vehicles, Tesla has refused to add artificial noise.


"There is something amazing about being able to hear what is going on around you," said Mr Siry. However, Londoners we showed the car to had reservations.

"It looks impressive, but for that amount of money I'd want people to know I was coming," said 22-year-old student Freddie Ridge, from Kingston.

"It might cause problems as pedestrians won't hear it."

Driving it is an odd experience. It looks very similar to the Lotus Elise - unsurprisingly, given that it is built by Lotus Engineering.

However, switch it on, and, well, nothing happens. It took a few glances toward Tesla's staff to confirm it was running. Pull away (there's no clutch, and it drives exactly like an automatic), and there's the slightest whirr from behind you, but that's it.

In central London, with tourists and commuters rushing around, no one could hear the car coming.

On several occasions I had to slam on the (thankfully very good) brakes as pedestrians walked straight in front, and cyclists were also oblivious. The Tesla caused a stir pulling up silently at lights.

However, find a bit of open road and the Tesla shows its performance. Acceleration is breathtaking, and the lack of noise or gear changes makes it even more exhilarating.

The steering is sharp and precise, and the suspension - which in the final version will be easily adjustable - is very stiff, as you'd expect.

At £92,000, this isn't a mass-market car. However, in the not too distant future, this is exactly the kind of car we'll all be driving - just a much cheaper version.

Sexy hybride conceptcar van Peugeot



Peugeot pakt op de Salon van Parijs groots uit met een schitterende conceptcar. Het is een vierdeurscoupé met een hybride aandrijflijn.
Peugeot noemt ´m RC…, puntje, puntje, puntje dus en het is een vervolg op de 908 RC die twee jaar geleden in de Franse hoofdstad schitterde. En we moeten ´m volgens de Fransen zien als de missing link tussen de RC♥ en RC♦ conceptcars. De grote coupé lijkt op een mix tussen een sportwagen en een sedan. Vier zittingen bieden alle ruimte en comfort en de aandrijflijn is hybride, dus de inzittenden hoeven zich niet te verantwoorden voor al die dikdoenerij. Als de verbrandingsmotor en de elektromotor samen werken is het maximum vermogen 313 pk, de CO2-uitstoot is slechts 109 gram per kilometer, net zoveel als een Toyota Prius of een Peugeot 107 dus! Als de RC… op geheel elektrische kracht rijdt stoot hij niets uit.
Hoe Peugeot deze conceptcar uiteindelijk gaat noemen horen we waarschijnlijk in Parijs, waar begin oktober het autofeest van start gaat.

Lithium-ion plug-in hybrides van Toyota in 2010 op de markt

Toyota Motor Corporation (TMC) heeft op de North American International Auto Show 2008 in Detroit bekendgemaakt in 2010 te beginnen met de verkoop van plug-in hybrideauto's met lithium-ionbatterijen aan fleetowners in de Verenigde Staten en daarbuiten. Met dit doel onderzoeken TMC en de Matsushita Group momenteel de haalbaarheid van de massaproductie van lithium-ionbatterijen in de fabriek in Omori, centraal-Japan, door hun joint-venture-onderneming Panasonic EV Energy Co, Ltd.
De bekendmaking betekent een nieuwe stap op weg naar de popularisering van plug-in hybrideauto's, na de start van de tests op de openbare weg in 2007 van plug-in hybrideauto's van Toyota, uitgerust met nikkelmetaalhydridebatterijen in Japan, de VS en Europa. In de VS zijn deze tests begonnen in november 2007, in samenwerking met de University of California, Berkeley, en de University of California, Irvine, in het kader van het State of California's Alternative Fuel Incentive Program.

TMC zal zich blijven inspannen voor de ontwikkeling van uiteenlopende, geavanceerde technologieën, die een bijdrage leveren aan een wereld van duurzame mobiliteit, waarin mens en milieu vreedzaam naast elkaar kunnen bestaan. Het bedrijf is doordrongen van het belang de beschikbaarheid van dergelijke technologieën te vergroten. Naast de plug-in voertuigen gaat TMC door met de ontwikkeling van brandstofcelvoertuigen, voertuigen die geschikt zijn voor meerdere soorten brandstof, dieselmotoren en dergelijke.

In Europa werkt Toyota sinds september 2007 samen met energieconcern EDF om plug-in hybrideauto’s in Europa op de markt te brengen. De doelstelling van deze samenwerking bestaat uit het ontwikkelen van praktische oplossingen voor de vercommercialisering van Toyota’s prototype op dit gebied. Hiermee kan de milieuvervuiling in met name stedelijke gebieden verder worden teruggedrongen, hetgeen meehelpt aan de leefbaarheid.

Nanoantennes vangen zonne-energie op.



Traditionele zonnecellen zetten slechts 20% van het licht om in zonne-energie. Meer efficiëntere zonnecellen zijn te duur voor massaproductie. Onderzoekers van de US Department of Energy’s Idaho Laboratory hebben een manier gevonden om middels een goedkoop stukje plastic voorzien van miljarden nanoantennes zonne-energie op te vangen.

De nanoantennes hebben de vorm van een klein vierkant of een spiraal en worden bevestigd op een folie van polyethyleen. De onderzoeker geloven dat onder de juiste condities de nanoantennes tot 92% van de energie van de infrarode straling kunnen opvangen.

Anders dan de traditionele zonnecellen, welke gebruik maken van het zonlicht uit het zichtbare spectrum, gebruiken de nanoantennes middelinfrarode straling. Het gebruik van middelinfrarode straling betekent dat de nanoantennes zelfs wanneer het donker is nog energie kunnen leveren.

Voorlopig valt er nog genoeg te onderzoeken. De onderzoekers zijn er namelijk nog niet uit, hoe de energie om te zetten naar elektriciteit. Desondanks geeft het een interessante kijk naar de toekomst van zonne-energie.

Volvo: oplaadbare auto in 2013

Volvo denkt in 2013 de eerste plug-in hybride te kunnen introduceren. Voor die tijd komt het Zweedse merk met een aantal auto’s die gebruik maken van bestaande hybride-technieken. Dat zegt Lex Kerssemakers, het Nederlandse bestuurslid van Volvo Car Corporation, in een gesprek met dit blad. Hij is verantwoordelijk voor de productstrategie van de Ford-dochter.

Volvo werkt momenteel aan de C30 ReCharge, een auto waarvan de batterijen via het stroomnet opgeladen kunnen worden door letterlijk een stekker in het stopcontact te steken. De benzinemotor is daarbij geen volwaardige krachtbron naast de elektromotor (zoals bij de Toyota Prius), maar dient slechts als back-up. “De plug-in hybride is de volgende stap in de keten van hybride auto’s”, aldus Kerssemakers. “Een actieradius van 50 tot 100 kilometer is voldoende voor deze auto’s die voornamelijk in stedelijke gebieden gebruikt zullen worden.”

Eerder meldde projectleider Ichori Sugioka dat de elektromotor van de C30 200 pk produceert en maar liefst 1000 Nm aan koppel. Of de introductiedatum van 2013 ook daadwerkelijk wordt gehaald hangt volgens Kerssemakers onder meer af van de betrouwbaarheid en de beschikbaarheid van batterijen.

Volgens automotive-consultant Wolfgang Bernhart van Roland Berger zal de prijs van batterijen gaan dalen omdat de productiefaciliteiten daarvoor momenteel fors wordt uitgebreid. Hij denkt dat in 2020 plug-in hybrides en elektrische auto’s een marktaandeel hebben van zo’n 30 procent. GM zegt bijvoorbeeld in 2009 de Chevrolet Volt te willen introduceren.

Vóór 2013 zal Volvo een aantal modellen gaan aanbieden met hybridetechniek, aldus Kerssemakers. Dat zal dat als eerste gebeuren in de grotere Volvo’s als de V70, S80 en XC90 omdat die het minst prijsgevoelig zijn. “We moeten het gat tot de plug-in hybride overbruggen.” Volvo speelt binnen het Ford-concern een belangrijke rol op hybride-gebied: in Göteborg staat één van de zogenaamde Hybrid Development Centers van Ford. Hybrides zijn volgens Kerssemakers noodzakelijk om aan de Europese milieunormen te voldoen. Het productportfolio van autofabrikanten mag dan gemiddeld niet meer dan 120 gram CO2 per gereden kilometer uitstoten. De steeds schaarser wordende olie moet volgens hem worden gereserveerd voor vrachtwagens en bussen, voertuigen waarbij hybridetechniek niet goed toepasbaar is. Tot 2013 investeert Volvo 11 miljard kroon (iets meer dan 1 miljard euro) in het zuiniger en schoner maken van zijn auto’s.

Revival benzine

Kerssemakers (een Hollandse Ster) verwacht verder een comeback van de benzinemotor. De afgelopen jaren hebben autofabrikanten veel geld gestoken in de ontwikkeling van diesels, waardoor de zelfontbrander van zijn imago als vervuilende en trage krachtbron is verlost. Maar volgens de Nederlander in Zweedse dienst is het vanuit kostenoogpunt interessant om weer met benzinetechniek aan de slag te gaan. “We moeten naar Euro 6 (Europese milieunorm voor motoren, red) in 2013. En dieseltechniek is duurder dan benzine. Ik denk dat er vernieuwde aandacht komt voor benzine.” Of de VS aan de diesel gaat weet hij nog niet. “Wij geloven dat de Duits autofabrikanten daar de wereld moeten veranderen.”

Kerssemakers weigert zijn vingers te branden aan de huidige heikele discussie rond biobrandstoffen. Volvo produceert sinds 2005 FlexiFuel-modellen die rijden op E85, een mengsel van 85 procent ethanol en 15 procent benzine. “Ik blijf liever ver weg van politiek.” Wel vindt hij dat er momenteel een ‘ongebalanceerde discussie’ wordt gevoerd over het gebruik van biobrandstoffen. Kerssemakers vindt ethanol wel nog steeds een volwaardig alternatief voor diesel en benzine. Hij wijst op de komst van de zogenaamde tweede generatie biobrandstoffen, die niet concurreren met de voedselvoorziening.

Rijden op Stroom

De grote autobouwers houden zich nauwelijks bezig met volledig elektrisch aangedreven voertuigen. En daar ligt volgens het Californische Zap nu juist wel de toekomst.

Rond 1900 reden in de Verenigde Staten volop elektrische auto’s rond. Het was nog niet helemaal duidelijk wat het zou worden: benzine of stroom. Onder de eigenaren van elektro-auto’s waren zelfs oliebaron John D. Rockefeller en de vrouw van autopionier Henry Ford.

Met de uitvinding van de startmotor – nooit meer slingeren – en het steeds goedkoper worden van de benzine was het echter snel gedaan met de fluisterwagens met hun zware en lastige accu’s.

Zo’n honderd jaar later lijken de rollen weer langzaam om te draaien. Gierend hoge benzineprijzen, klimaatangst en verbeterde accutechniek zorgen voor een comeback van voertuigen op stroom. En ook nu komt de grootste pionier weer uit Californië.

Het bedrijf Zap, wat staat voor Zero Air Pollution, begon in 1994 bescheiden, met de verkoop van elektrische fietsen en scooters. Inmiddels is het een heus beursfonds dat in de loop der jaren in 75 landen al meer dan 100.000 elektrische voertuigen verkocht. Juichende cijfers leverde dat nog niet op, maar er is wel degelijk een stijgende lijn. Van 2005 op 2006 groeide de omzet van zeven ton naar een kleine drie miljoen dollar. Op de beurs wordt het bedrijf de afgelopen jaren voortdurend getipt als veelbelovend, toch zijn beleggers nog steeds afwachtend; de beurswaarde van het bedrijf schommelt rond een bescheiden 30 miljoen dollar.

Met de Zap Xebra wil het bedrijf nu doorstoten naar de major league. Echt sexy is dit elektrisch aangedreven karretje niet. Het doet met zijn drie wielen zelfs denken aan de Reliant Robin, het Britse non-autootje uit de jaren zeventig en tachtig. Toch hebben karretjes als de Xebra wel degelijk sex-appeal. Zij het vermoedelijk meer onder boekhouders dan de bezorgers die er in rond moeten rijden. Per gereden kilometer verbruikt een Zap Xebra minder dan één eurocent aan elektriciteit. Mooie bijkomstigheid is dat het ding volgens de makers – inclusief het opwekken van de elektriciteit in een centrale – nog steeds 90 procent minder vervuilt dan een benzine-auto.

In Amerika zijn de afnemers inmiddels allang niet meer alleen bomenknuffelaars, eco-freaks of milieu-terroristen: ook immer op lagere kosten jagende bedrijven als Domino’s Pizza, pakjesbezorger UPS en Coca-Cola geloven tegenwoordig in tanken aan het stopcontact. Ze gebruiken de Xebra (prijskaartje: 6.000 euro) als pakezel in overvolle binnensteden.

Hoe handig de Xebra ook is, een echte auto heb je er niet mee. Hij haalt bijvoorbeeld maar een snelheid van een kleine zestig kilometer per uur en heeft met zijn volgeladen – ouderwetse – loodaccu een actieradius van een kleine honderd kilometer. Daarnaast voelt het ding volgens autojournalisten nog steeds aan als een opgevoerd golfkarretje.

Daarom heeft het Californische bedrijf ambitieuze plannen. Er moet een elektro-auto komen die een Porsche kan temmen. Op papier bestaat het ding al en mogen de prestaties er wezen. Volgens de eerste voorverkoopfolder zou deze luxe vierdeurs Zap-X met één elektromotor per wiel maar liefst 644 pk op de weg brengen. Op één lading van tien minuten moet hij ruim 560 kilometer kunnen afleggen. Prestaties: 0 tot 100 kilometer per uur in 4,8 seconden. Topsnelheid: 250 kilometer per uur. Voeg daarbij een zeer appetijtelijk design van het Britse Lotus en een redelijke prijs van 36.500 euro en voilà: een absolute verkooptopper.

Tot zover de theorie...‘We werken er hard aan, maar dit is echt nog een voorstudie’, zegt Alex Campbell van Zap, terwijl hij naar eigen zeggen in zijn eigen Xebra naar zijn werk zoeft. ‘We hopen in 2009 genoeg geld te hebben om de Zap-X te ontwikkelen.’

Toekomstmuziek dus. Het bedrijf wil eerst maar eens de Xebra sneller en meer hightech maken. ‘Ik gebruik hem zelf dagelijks om mee naar mijn werk te gaan. Het is een ritje van iets meer dan twintig kilometer. Dat kost me heen en weer een paar cent. Wanneer ik dat met de auto doe, ben ik een paar dollar kwijt.’

Campbell kan zich voorstellen dat het ding veel gemiddelde autokopers niet aanspreekt. ‘Toch verkopen we hem veel als tweede of derde auto voor korte boodschappenritjes. Met een prijs van nog geen 10.000 dollar en een nagenoeg nihil verbruik is het natuurlijk een ideale aanvulling op de gewone auto.’

De komende maanden wil Zap met de Xebra de sprong maken naar Europa. Volgens Campbell is het bedrijf in meerdere Europese landen bezig om type-goedkeuringen rond te krijgen en is de jacht op distributeurs geopend. ‘Het eerste exemplaar in Groot-Brittannië hebben we inmiddels verkocht aan een Londense moeder met twee kinderen.’ Pakjesbezorger UPS gelooft in tanken aan het stopcontactKlimaatangst en de benzineprijs zorgen voor comeback van auto’s op stroom..

Hoe staat het met de elektrische auto in Nederland?

De Nederlandse energieleverancier Essent heeft met hun project ZER-X het rijden in een elektrische auto weer helemaal populair gemaakt. ZER staat voor Zero Emissie Rijden en de X staat voor alle voordelen die het rijden in een elektrische auto heeft.
Essent wil met enkele andere bedrijven de elektrische auto op grote schaal in Nederland gaan introduceren. Dit wordt waarschijnlijk de grote doorbraak in Nederland. De accu’s die in de elektrische auto’s zitten moeten de groene energie (zon- en windenergie) gaan opslaan.

Tot nu toe was het nog niet mogelijk om groene energie op te slaan. Volgens Essent moet een slim netwerk, de Mobile Smart Grid, ervoor gaan zorgen dat er een snelle introductie komt met betrekking tot het elektrisch rijden.

Het Mobile Smart Grid moet gaan zorgen voor:

# Grotere opslagcapaciteit van de accu’s. Hierdoor kan de opgewekte groene energie maximaal benut worden.
# Een betere verdeling van het energieverbruik op een dag. Momenteel zijn er momenten dat er nauwelijks energie verbruikt wordt.
# Een goede betalingsmethode. Het moet mogelijk zijn dat de automobilist een rekening thuisgestuurd krijgt, ongeacht de plaats waar hij de accu oplaadt.
# Een intelligente computer in de auto waarmee je kunt instellen wanneer en hoeveel energie je voor welke prijs wilt hebben. Op die manier kan de automobilist ’s nachts, wanneer de energie goedkoper is, flink besparen. Het Mobile Smart Grid moet deze gegevens dan ophalen en er vervolgens voor zorgen dat deze gegevens ook uitgevoerd gaan worden.

Electric Cars Europe presenteert elektrische auto.

De eerste elektrische auto´s zijn ook in ons land een feit. De nieuw opgerichte onderneming Electric Cars Europe presenteert namelijk een elektrisch aangedreven Lotus Elise en geeft daarmee het startsein voor een invasie van elektrische automobielen.
De elektrische auto hing al enige tijd in de lucht. Na de vele verhalen over onder meer Toyota´s plug-in hybride, de elektrisch aangedreven Citroën Berlingo van Venturi en de conceptcar Nissan Denki Cube leek het erop dat steeds meer fabrikanten wel toekomst zagen in elektrische auto´s. In ons land komt alles in een stroomversnelling dankzij de nieuw opgerichte organisatie Electric Cars Europa.

ECE
Electric Cars Europa is een samenwerking tussen Lotus-importeur Van der Kooi Sportscars, Innosys Engineering (levering aandrijfunit), United Momentum Group (investeerder) en energiebedrijf Essent. Dankzij de diverse partners kan al vanaf juli worden gestart met de productie c.q. ombouw. In Lochem is een productie-ruimte met een vloeroppervlak van 3.500 vierkante meter beschikbaar. Elke week zal daar per werkplek één auto worden omgebouwd tot een elektrisch voertuig.

Prima prestaties
De ontwikkeling is inmiddels in volle gang. Electric Cars Europe heeft onder meer prototypes ontwikkeld op basis van de Daihatsu Cuore, Lotuse Elise en Volkswagen Golf. Opvallend is dat de prestaties er totaal niet onder te leiden hebben. Neem de Lotus Elise-ece. Die beschikt over een 150 kW sterke elektromotor en weet daarmee in 4,7 seconden vanuit stilstand naar 100 km/h te sprinten en vervolgens een topsnelheid van 215 km/h te bereiken. De actieradius is met 325 km nog enigszins beperkt. Ook voor de Volkswagen Golf-ece gelden relatief goede prestaties. De 0-100 km/h sprint verloopt in 9 seconden en de topsnelheid ligt met 145 km/h op een redelijke waarde. Na 350 km moet de Golf echter wel weer aan het stopcontact.

Laadpunten
Opladen kan in principe gewoon thuis gebeuren. Maar partner Essent werkt tevens aan een groot aantal ´snellaadpunten´ verspreid over het hele land. Deze laadpunten zullen worden geplaatst bij onder andere benzinestations, parkeerplaatsen, hotel-ketens, winkels en treinstations. Deze snelladers zijn in staat om de auto binnen slechts 10 minuten volledig op te laden.

Detroit Electric
Waar Electric Cars Europe bestaande auto´s ombouwt tot schone elektrische voertuigen werkt partner Detroit Electric aan compleet eigen modellen. Electric Cars Europe heeft dan ook een samenwerking gestart met Detroit Electric om deze modellen te gaan importeren. Er moet gedacht worden aan een compact model met een 30 kW motor en een actieradius van 320 km. Het model gaat in ons land € 22.491,- kosten. Bovendien is er ook een middenklasser ontwikkeld die met een 150 kW sterke motor iets meer moet bieden. Dit model gaat € 29.251,- kosten. ECE onderzoekt tevens de marktmogelijkheden van andere modellen zoals een Crossover Electric Vehicle in het premium segment. Deze CEV beschikt over 480 kW/653 pk sterke elektrische motoren in de wielen en heeft een actieradius van 560 kilometer en een topsnelheid van 250 km/u. De acceleratie van 0 tot 100 km/u neemt slechts ca. 5 seconden in beslag, terwijl het opladen in een recordtijd van tien minuten geschiedt. De catalogusprijs van deze 7-persoons SUV, gebaseerd op het Lotus APX prototype, zal € 71.400 bedragen.

Auto van de toekomst
De eerste elektrische auto´s zullen spoedig op de Nederlandse wegen verschijnen. Essent is namelijk voornemens om 200 elektrisch aangedreven Volkswagen Golf´s aan te schaffen. Bovendien zullen veel ondernemingen met een ´duurzaam beleid´ wel heil zien in deze auto van de toekomst.